| NODIS Library | Program Management(8000s) | Search | NPR 8705.4 Effective Date: June 14, 2004 Expiration Date: July 09, 2013 #### **COMPLIANCE IS MANDATORY** Printable Format (PDF) Request Notification of Change (NASA Only) Subject: Risk Classification for NASA Payloads (Revalidated July 9, 2008) Responsible Office: Office of Safety and Mission Assurance # | TOC | Change History | Preface | Chapter1 | Chapter2 | AppendixA | AppendixB | AppendixC | ALL | | CLASS A | CLASS B | CLASS C | CLASS D | |---|--|--|---|---| | Single Point
Failures
(SPFs) | Critical SPFs (for Level 1 requirements) are not permitted unless authorized by formal waiver. Waiver approval of critical SPFs requires justification based on risk analysis and implementation of measures to mitigate risk. | Critical SPFs (for Level 1 requirements) may be permitted but are minimized and mitigated by use of high reliability parts and additional testing. Essential spacecraft functions and key instruments are typically fully redundant. Other hardware has partial redundancy and/or provisions for graceful degradation. | Critical SPFs (for
Level 1
requirements)
may be permitted
but are mitigated
by use of high
reliability parts,
additional testing,
or by other
means. Single
string and
selectively
redundant design
approaches may
be used. | Same as
Class C. | | Engineering
Model,
Prototype,
Flight,
and Spare
Hardware | Engineering model hardware for new or modified designs. Separate prototype and flight model hardware. Full set of assembled and tested "flight spare" replacement units. | Engineering model hardware for new or significantly modified designs. Protoflight hardware (in lieu of separate prototype and flight models) except where extensive qualification testing is anticipated. Spare (or refurbishable prototype) hardware as needed to avoid major program impact. | Engineering model hardware for new designs. Protoflight hardware permitted (in lieu of separate prototype and flight models). Limited flight spare hardware (for long lead flight units). | Limited
engineering
model and
flight spare
hardware. | | Qualification,
Acceptance,
and
Protoflight Test
Program | Full formal qualification
and acceptance test
programs and integrated
end-to-end testing at all
hardware and software
levels. | Formal qualification and acceptance test programs and integrated end-to-end testing at all hardware levels. May use a combination of qualification and protoflight hardware. Qualified software simulators used to verify software and | Limited qualification testing for new aspects of the design plus full acceptance test program. Testing required for verification of safety compliance | Testing required only for verification of safety compliance and interface compatibility. Acceptance test program for critical | | | | system. | and interface compatibility. | performance parameters. | |---|--|--|---|---| | EEE Parts *http: // nepp .nasa .gov/ index_nasa .cfm/ 641 | NASA Parts Selection List (NPSL)* Level 1, Level 1 equivalent Source Control Drawings (SCDs), and/or requirements per Center Parts Management Plan. | Class A requirements or
NPSL Level 2, Level 2
equivalent SCDs, and/or
requirements per Center
Parts Management Plan. | Class A, Class B
or NPSL Level 3,
Level 3 equivalent
SCDs, and/or
requirements per
Center Parts
Management
Plan. | Class A,
Class B, or
Class C
requirements,
and/or
requirements
per Center
Parts
Management
Plan. | | Reviews | Full formal review program. Either IPAO external independent reviews or independent reviews managed at the Center level with Mission Directorate participation. Include formal inspections of software requirements, design, verification documents, and code. | Full formal review program. Either IPAO external independent reviews or independent reviews managed at the Center level with Mission Directorate participation. Include formal inspections of software requirements, design, verification documents, and peer reviews of code. | Full formal review program. Independent reviews managed at Center level with Mission Directorate participation. Include formal inspections of software requirements, peer reviews of design and code. | Center level reviews with participation of all applicable directorates. May be delegated to Projects. Peer reviews of software requirements and code. | | Safety | Per all applicable NASA safety directives and standards. | Same as Class A. | Same as Class A. | Same as
Class A. | | Materials | Verify heritage of previously used materials and qualify all new or changed materials and applications/configurations. Use source controls on procured materials and acceptance test each lot/batch. | Use previously tested/flown materials or qualify new materials and applications/configurations. Acceptance test each lot of procured materials. | Use previously tested/flown materials or characterize new materials. Acceptance test sample lots of procured materials. | Requirements
are based on
applicable
safety
standards.
Materials
should be
assessed for
application
and life limits. | | Reliability NPD
8720.1 | Failure mode and effects analysis/critical items list (FMEA/CIL), worst-case performance, and parts electrical stress analysis for all parts and circuits. Mechanical reliability, human, and other reliability analysis where appropriate. | FMEA/CIL at black box (or circuit block diagram) level as a minimum. Worst-case performance and parts electrical stress analysis for all parts and circuits. | FMEA/CIL scope
determined at the
project level.
Analysis of
interfaces. Parts
electrical stress
analysis for all
parts and circuits. | Analysis
requirements
based on
applicable
safety
requirements.
Analysis of
interface. | | Fault Tree
Analysis | System level qualitative fault tree analysis. | Same as Class A. | Same as Class A. | Fault tree
analysis
required for
safety critical
functions. | | Probabilistic
Risk
Assessment
NPR 8705.5 | Full Scope, addressing all applicable end states per NPR 8705.5. | Limited Scope, focusing on
mission-related end-states
of specific decision making
interest per NPR 8705.5. | Simplified,
identifying major
mission risk
contributors.Other
discretionary
applications. | Safety
only.Other
discretionary
applications. | |--|--|---|---|--| | Maintainability ¹
NPD 8720.1 | As required by NPD 8720.1 | Application of NPD 8720.1 determined by program. (Typically ground elements only.) | Maintainability considered during design if applicable. | Requirements
based on
applicable
safety
standards. | | Quality
Assurance
NPD 8730.5
NPR 8735.2
(NPR 8735.1) | Formal quality assurance program including closed-loop problem reporting and corrective action, configuration management, performance trending, and stringent surveillance. GIDEP failure experience data and NASA Advisory process. | Formal quality assurance program including closed-loop problem reporting and corrective action, configuration management, performance trending, moderate surveillance. GIDEP failure experience data and NASA Advisory process. | Formal quality assurance program including closed-loop problem reporting and corrective action, configuration management, tailored surveillance. GIDEP failure experience data and NASA Advisory process. | Closed-loop problem reporting and corrective action, configuration management, GIDEP failure experience data and NASA Advisory process. Other requirements based on applicable safety standards. | | Software | Formal project software assurance program. Independent Verification and Validation (IV&V) as determined by AA OSMA. | Formal project software assurance program. IV&V as determined by AA OSMA. | Formal project
software
assurance
program. IV&V as
determined by AA
OSMA. | Formal project software assurance insight. IV&V as determined by AA OSMA. | | Risk
Management
NPR 8000.4 | Risk Management
Program. Risk reporting to
GPMC. | Same as Class A. | Same as Class A. | Same as
Class A. | | Telemetry
Coverage ² | During all mission critical events to assure data is available for critical anomaly investigations to prevent future recurrence. | Same as Class A. | Same as Class A. | Same as
Class A. | 1For ISS payloads, maintainability, reliability, and availability requirements should be defined at an early phase and plans addressed during the design, development, and testing of the payload, regardless of class. Components with low reliability should be assessed for on-orbit maintainability based on the availability requirements, and other relevant factors. The balance of these factors should result in a payload that meets performance requirements for the required duration of flight. ²Mission critical events in the operation of a spacecraft are those which, if not executed successfully (or recovered from quickly in the event of a problem), can lead to loss or significant degradation of mission. Included in critical event planning are timelines allowing for problem identification, generation of recovery commands, and up linking in a timely manner to minimize risk to the in-space assets. Examples include separation from a launch vehicle, critical propulsion events, deployment of appendages necessary for communication or power generation, stabilization into a controlled power positive attitude, and entry-descent and landing sequences. ## | TOC | Change History | Preface | Chapter1 | Chapter2 | AppendixA | AppendixB | AppendixC | ALL I | NODIS Library | Program Management(8000s) | Search | # DISTRIBUTION: NODIS This Document Is Uncontrolled When Printed. Check the NASA Online Directives Information System (NODIS) Library to Verify that this is the correct version before use: http://nodis3.gsfc.nasa.gov